这张图片模拟的是ATLAS里产生的黑洞。这个轨迹是模仿大型强子对撞机上的ATLAS探测器得出的模拟数据。如果质子-质子撞击期间产生了微型黑洞,这些轨迹就会形成。这种小型黑洞会通过霍金辐射(Hawking radiation)方式,立刻消失不见。
上月末欧洲大型强子对撞机进行了迄今能级最高的对撞实验,尽管物理学家一再解释对撞机的对撞实验足够安全,但对于其可能产生的迷你黑洞恐怕大众知之甚少。近日美国物理学家组织网撰文揭秘对撞机对撞实验可能产生的迷你黑洞。以下为文章全文:
在电影和科幻小说中,黑洞可以捕获粗心大意的飞船和行星,吞噬整个星系,或者为宇宙的其他部分提供入口。在这些描述的启示下,物理学家们研制出大型强子对撞机(LHC),终于有了一个强大到可以制造“迷你”黑洞的机器——尽管有些人对此感到恐慌。
然而我们真正对黑洞了解多少?“迷你”黑洞与潜伏在太空中的大型黑洞有何不同?牛津大学物理系的奇戴姆·艾瑟威尔解释说:“最简单的黑洞是中心有奇点,而且被‘黑洞表面(Event Horizon)’环绕的天体。一旦有东西与黑洞之间的距离小于‘黑洞表面’的半径,它就会被黑洞吸进去,再也无法逃逸出去,即使光也无法逃出黑洞的魔爪,因此美国物理学家约翰·阿奇巴德·惠勒在1967年把这些天体命名为‘黑洞’。”
太阳和黑洞
产生的黑洞原来是质量(能量):质量被塞进一个球体,这个球体的半径与“施瓦氏半径”(Schwarzschild radius)相等,就形成黑洞。施瓦氏半径是引力导致一个特定密度的天体自行坍塌的临界点。奇戴姆告诉我说:“事实上施瓦氏半径与塞进去的物体的总质量和引力的强度成正比。例如,为了在我们的地球外形成黑洞,你必须把它塞进一个体积大约只有一个弹子(半径8.9毫米)那么大的球体里。相比之下,太阳的施瓦氏半径大约是3公里。”如果我们用黑洞代替我们的太阳,会出现什么情况呢?
奇戴姆说:“如果我们用相同质量的黑洞取代我们的太阳,我们的太阳系不会有太大改变。地球会继续保持在现在的轨道里,因为黑洞产生的引力可能跟太阳产生的引力正好相同。不过整个太阳系会变的比现在暗一些,冷一些。”但是奇戴姆对黑洞的兴趣并非只是建立在理论之上,作为粒子物理学家,她将在大型强子对撞机的撞击过程中,寻找“迷你”黑洞的迹象。
了解量子引力效应
奇戴姆表示:“2003年,作为粒子物理学家的我对黑洞产生兴趣,因为更多维的模型预示,高能宇宙射线甚至粒子加速器里都有可能产生黑洞。如果我们真能生成这种物体,我们将能通过试验,更好地了解量子引力效应。”她希望通过研究黑洞,可以得出一个公式化的量子引力理论:把爱因斯坦的广义相对论(从宏观上描述了引力)与量子力学(从微观角度描述了物理学)嫁接在一起。
大型强子对撞机是质子与质子相撞。这些质子由更小的成分构成,即所谓的“部分子”,事实上它们才是大型强子对撞机里正在相撞的粒子。大型强子对撞机里的两个相撞质子(例如夸克和胶子)的施瓦氏半径,至少比普朗克长度(Planck length)小15个等级。普朗克长度是可以在常规宇宙中获得的物体的最小间距或大小。
奇戴姆评论说:“这意味着在常规物理模型中,两个质子相撞根本不会产生黑洞。然而有模型称,在非常小的距离内引力会变得异常大。如果这种猜测属实,大型强子对撞机里两个相撞质子的施瓦氏半径会变的足够大,因此两个质子彼此穿过对方并非没有可能。如果真是这样,我们或许可以生成一个微型黑洞。”
谁会担心迷你黑洞
这些小型黑洞是什么样的?我们应该担心它们吗?奇戴姆告诉我说:“据斯蒂芬·霍金说,事实上它们不会那么黑暗。随着黑色天体不断辐射波谱,它们最终会消失。它们的消失速度与黑洞的质量成反比。庞大黑洞的质量非常大,它们的消失速度可以忽略不计。与之相比,迷你黑洞非常热:热得令人难以置信。我们太阳的核心大约有1500万开氏温标,然而它要想赶上迷你黑洞的温度,你必须再在这个数字后面添加42个零。这种令人难以置信的高温意味着迷你黑洞会很快消失在它们周围温度更低的太空里。它们的潜在寿命大约是一亿分之一秒的一千的九次方分之一。因此它们产生后会在刹那间消失不见。”
如果它们果真出现了,它们会立刻变成很多小粒子,利用ATLAS探测器可以发现它们。奇戴姆说:“这些粒子将拥有非常惊人的特征。储存在探测器里的总能量大约是几兆电子伏特,终态粒子的数量会非常大。利用其他新物理学几乎无法模拟黑洞的特征,如果它们果真产生了,我们就不会错过它们。”
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。