对核酮糖—1,5—二磷酸羧化酶/加氧酶(以下简称RuBisCO)组装的研究一直是明升m88明升体育app领域的研究热点之一。
5月25日,《自然—植物》在线发表了明升官网明升体育app技术大学团队的最新研究成果,研究人员阐明了蓝藻分子伴侣Raf1协助RuBisCO组装的分子机理,发现RuBisCO成熟过程的多层次精细动态调控网络,为人工改造RuBisCO以提高光合作用效率奠定了基础。
明升官网明升体育app技术大学微尺度物质明升体育app国家研究中心和明升m88明升体育app与明升手机版部教授周丛照和陈宇星、副教授江永亮为该论文的共同通讯作者,博士生夏凌云、副教授江永亮和博士生孔文文为该论文共同第一作者。
Raf1的晶体结构(a,b)以及Raf1-RbcL复合物的晶体结构(c)
RuBisCO是将CO2同化到生物圈的关键酶,它广泛存在于植物叶绿体基质和蓝藻中。
作为地球上丰度最高的酶,RuBisCO总质量约为7亿吨,每年将地球上超过1000亿吨CO2固定为有机物,是无机碳进入生物圈的主要途径。CO2的同化既可降低温室效应,缓解全球变暖,还可充分利用无机碳源。
然而,RuBisCO是一种极其低效的催化剂,同时RuBisCO可以进行加氧反应进入光呼吸途径,从而抑制了RuBisCO的羧化酶活性。
“一个RuBisCO全酶每秒钟只能催化3~10个CO2分子的转化。”论文指出。
提高RuBisCO活力,是明升体育app家认为的提高光合效率的重要途径之一。将蓝藻的CO2浓缩机制(CCM)系统引入植物,被认为是一种潜在的提高植物光合作用效率和产量的方法。但迄今为止,对于RuBisCO组装和成熟的精细过程仍然不清楚,极大限制了RuBisCO的工程改造和活性优化。
江永亮介绍,蓝藻通过CCM在羧酶体内高度浓缩CO2,从而有效提高RuBisCO的催化效率。蓝藻和植物中的I型RuBisCO由8个大亚基RbcL和8个小亚基RbcS组装形成全酶RbcL8S8。RuBisCO全酶的组装和成熟需要多个分子伴侣的帮助,包括GroEL/ES、RbcX、Raf1以及在植物中特有的BSD2和Raf2。
在这项研究中,研究人员解析了蓝藻分子伴侣Raf1以及Raf1和RuBisCO大亚基RbcL复合体的晶体结构。
单独的Raf1以交错的二体形式存在;当结合RbcL时,Raf1的两个结构域Raf1α和Raf1β发生75°的相对旋转,从而形成类似镊子的结构夹住一个RbcL二体,同时Raf1α结构域的外侧介导RbcL二体之间相互作用,进一步介导RbcL八聚体核心的形成。
Raf1α在RbcL上的结合位点与小亚基RbcS高度重叠,RbcS通过替换Raf1α而形成全酶。
进一步研究发现,RbcL、RbcS和Raf1可以形成三元复合物;为了进一步研究它们之间的相互作用模式,研究人员通过冷冻电镜单颗粒分析的方法解析了RuBisCO和Raf1复合物的一系列不同中间状态的三维结构,直观展示了RbcS替换Raf1形成全酶过程中的多步动态构象。
RbcL-RbcS-Raf1组装中间态的一系列电镜结构
同时,研究人员通过生化手段发现Raf1能够拮抗支架蛋白CcmM介导的RuBisCO堆积及相变过程,进而参与调控RuBisCO的堆积和羧酶体内核的形成。
基于上述结论,研究人员提出了Raf1调控蓝藻RuBisCO组装、成熟以及堆积形成羧酶体内核的分子机制。
该研究为深入理解RuBisCO的组装和功能以及为RuBisCO的应用和改造奠定了分子基础。
Raf1调控RuBisCO组装和成熟的模式图
相关论文信息:http://doi.org/10.1038/s41477-020-0665-8
版权声明:凡本网注明“来源:明升官网明升体育app报、明升手机版(明升官网)、明升体育app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。