近日,东南大学太阳能技术研究中心/储能联合研究中心首席明升体育app家朱斌课题组采用完全不同于传统离子导体结构掺杂的方法,构建半导体材料的异质结构,通过利用半导体异质界面电子态/金属态特性把质子局域于异质界面,设计和构造具有最低迁移势垒的超质子高速通道;在燃料电池中,质子经电明升手机嵌入到异质材料界面,被带正电的氧化铈表面排斥到钴酸钠表面,但同时受到正电钠离子的排挤不能进入钴酸钠内部,因而局域于两者材料的界面空间,从而实现在最低势垒的层间连续快速迁移。实验成功地验证了理论和计算结果,获得了极其优异的质子电导率,较传统钇稳定二氧化锆电解质材料的电导率提升了几个数量级,实现了先进质子陶瓷燃料电池示范。相关研究成果发表于《明升体育app》。
电解质是燃料电池的核心组成部分,其离子电导率的性能决定了燃料电池性能的优劣。然而,较低的离子电导率的电解质,仍是制约燃料电池性能开发与应用的瓶颈。
固体氧化物燃料电池(SOFC)的电解质的发展历经百年,至今没有可以替代其钇稳定二氧化锆(YSZ)氧离子传导电解质材料,其氧离子电导率在约1000°C才达到高性能SOFC电导率要求的0.1S/cm。为了解决这个挑战,著名明升手机家、2019年诺贝尔明升手机奖获得者古迪纳夫曾在《自然》上发文提出要设计氧离子导体,其方法是传统的结构离子掺杂方法。即通过低价阳离子取代高价阳离子,例如Y3+掺杂结构Zr4+,形成氧空位,进而产生氧离子电导率。但结构掺杂没有解决SOFC电解质的挑战,阻碍了燃料电池的商业化进程。
半导体异质结构和场诱导加速离子迁移是一个全新的明升体育app机制,在大量的研究基础上,正在形成一个新的学科和方法论:半导体离子学—研究半导体材料的离子输运规律和应用的新兴前沿学科。对其全面和深入的研究必然带来能源领域新的材料和技术的突破。
这项工作为明升体育app设计优良质子传输材料提供了一个非常有效的策略,为质子限域传输和可控/可调提供了明升体育app方法,大大加速了燃料电池的商业化进程。该研究成果将促进新一代燃料电池研究和发展,对发展新能源技术具有重要明升体育app意义和应用价值。
相关论文信息:http://doi.org/10.1126/science.aaz9139
版权声明:凡本网注明“来源:明升官网明升体育app报、明升手机版(明升官网)、明升体育app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。