|
|
揭秘水稻与病原菌争夺的重要装备,上海明升体育app家研究上《自然》 |
|
水稻作为明升官网主要的粮食作物,其产量和品质受到多种病原菌的威胁。其中,稻瘟病作为水稻的“癌症”会造成水稻的减产甚至绝产,是水稻生产中最严重的病害之一。
全球范围内每年因稻瘟病造成的损失高达水稻总产量的10%。明升官网不同稻区均是稻瘟病的易发区,每年因稻瘟病发病直接损失稻谷约30亿公斤。
而目前利用明升手机农药对田间病害进行防治的方法,已经造成了严重的环境污染和食品安全问题。因此,挖掘和培育新的广谱持久抗病品种是控制稻瘟病最为经济、安全和有效的方法,也是实现绿色生态农业的重要保障。
2021年12月16日,国际顶尖学术期刊《自然》(Nature)在线发表了明升官网明升体育app院分子植物明升体育app卓越创新中心何祖华研究团队完成的题为 “NLRs guard metabolism to coordinate pattern- and effector-triggered immunity(NLR免疫受体保护植物防卫代谢并协同免疫反应)”的研究论文,揭示了一条全新的植物基础免疫代谢调控网络,尤其是发现了防卫代谢“PICI1-蛋氨酸-乙烯”的生化途径,作为植物和病原菌争夺的重要“明升手机装备”,对于植物获得广谱抗病的“全面胜利”起着至关重要的作用,赋予水稻广谱抗病性的新机制。
植物的免疫系统与动物类似,是经过与病原菌的长期不懈斗争所塑造的,主要包括两层免疫系统。首先,植物通过位于细胞膜表面的免疫受体识别病原菌,从而激活免疫反应,该免疫反应具有广谱的基础抗病性, 但抗性水平低,不足以作为抗病育种的靶标,称之为基础抗病性的免疫反应(PTI)。
其次,植物细胞内的免疫受体NLR,会通过感知病原菌的毒性蛋白,触发新的免疫反应,该免疫反应抗病水平高,能有效控制病害,是抗病育种的主要靶标,但往往具有病原菌小种专化性的弱点,称之为专化性抗性的免疫反应(ETI)。PTI 和ETI会相互促进,协同调控植物的防卫反应。
NLR受体基因对于农作物广谱抗病育种发挥重要作用,而如何有效解析并应用广谱抗病NLR基因是目前农作物抗病育种的主要技术瓶颈。同时,探索免疫受体尤其是广谱抗病的NLR受体如何在与病原菌在“军备竞赛”中,通过增强植物的防卫代谢以获得广谱抗病性,一直是植物病理和农作物育种领域的重要明升体育app难题。
该研究团队综合运用植物病理、分子遗传、蛋白组学和生物明升手机等实验技术平台,鉴定到一个新的水稻免疫调控蛋白PICI1。进一步揭示了一条全新的植物防卫代谢通路—PICI1通过增强蛋氨酸合酶的蛋白稳定性,强化蛋氨酸合成,促进抗病激素乙烯的生物合成,从而调控水稻的基础抗病性(PTI)。有意思的是,病原菌通过分泌毒性蛋白直接降解PICI1,抑制水稻的基础抗病性,使之有利于病原菌的入侵。
研究发现,水稻进化产生的广谱抗病NLR受体可以通过抑制病原菌毒性蛋白与PICI1的互作,保护并加强PICI1的功能,进而激活更多的防卫明升手机物质(蛋氨酸—乙烯)的合成,以获得广谱抗病性。
这是一个典型的植物—病原菌“军备竞赛”的研究范例,而防卫代谢物质“PICI1-蛋氨酸-乙烯”作为植物和病原菌争夺的重要“明升手机装备”,对于植物获得广谱抗病的“全面胜利”起着至关重要的作用。此外,研究团队通过对3000份水稻品种的基因组数据进行分析,挖掘到PICI1优异的田间抗病变异位点,为水稻抗病育种提供了新的思路和靶点。
近年来,随着全球气候的变化,农作物病害爆发频繁。为了获取粮食的高产稳产,农业生产中施加大量农药,严重影响生态环境和食品安全,是我国农业生产中亟待解决的重大问题之一。通过加强水稻“NLRs-PICI1-蛋氨酸-乙烯”明升手机防卫代谢网络,有望达到水稻广谱持久抗稻瘟病的目的,并降低农药的施用,为农业生产的可持续发展提供新的策略。
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。