明升体育·(中国)官方网站 - ios/安卓/手机版app下载

明升体育app下载 - App Store

明升体育app

明升体育手机版


 
作者:朱汉斌 来源:明升官网明升体育app报 发布时间:2022/6/29 11:35:59
选择字号:
临界有限有理函数动力系统研究获进展

 

广州大学数学与信息明升体育app学院副教授曾劲松、明升官网明升体育app院数学与系统明升体育app研究院研究员崔贵珍及深圳大学数学与统计学院副教授高延合作建立了临界有限有理函数的一个全新组合不变量。相关研究以50页长文的形式发表于Advances in Mathematics。审稿人对该项成果寄予了极高的评价。

黎曼球面上有理函数的动力系统是一维复动力系统领域最受关注和最有影响的研究方向之一,而临界有限有理函数(即各临界点均最终周期)是一类最简单、最具代表性的有理函数,它对应于代数几何中带有复乘的椭圆曲线。

菲尔兹奖得主、著名数学家William P. Thurston基于一种称为Thurston障碍的拓扑性质,给出了拓扑球面上的分歧覆盖组合等价于临界有限有理函数的充要条件。但令人遗憾的是,验证Thurston障碍十分困难。为此,国际数学家大会45分钟手机版人Mario Bonk教授提出了一个公开问题:能否避开Thurston障碍,建立临界有限有理函数的一个全新组合不变量。

曾劲松与其合作者发展了一种“从初始图到同伦不变图再到组合不变量”的全新技术,建立了临界有限有理函数的一个全新组合不变量,从而完整解决了Mario Bonk教授提出的公开问题。这一公开问题的解决对深化人们理解临界有限有理函数动力系统具有重要的推动作用。

相关论文信息:http://doi.org/10.1016/j.aim.2022.108454

 
版权声明:凡本网注明“来源:明升官网明升体育app报、明升手机版(明升官网)、明升体育app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
 
 打印  发E-mail给: