近日,暨南大学物理与光电工程学院(理工学院)教授关贺元、副教授杨铁锋、教授卢惠辉领衔的光波导混合集成与微纳光电器件团队在异质混合集成光电器件研究领域取得新进展。相关成果发表于《激光与光子学评论》(Laser & Photonics Reviews)。
?
MoS2/BaTiO3器件的非线性上转换光探测特性。研究团队供图
集成光电探测技术在众多领域应用广泛,然而,极端条件下探测器的可靠性问题日益凸显,弱光下表现优异,强光下则易饱和吸收,导致成像失真和“致盲效应”,并引发热效应和过流问题,加速老化。因此,如何在高效转换的同时提升极端条件下的稳定性和可靠性,成为当前研究的迫切需求。
传统方法如减弱光强或增加自动增益控制虽能减轻致盲效应,但牺牲了器件的紧凑性。为解决这一难题,研究团队在前期关于混合集成实现高性能光电子器件的研究基础上,提出铁电BaTiO3和层状半导体MoS2异质混合集成策略,基于二次谐波产成(SHG)效应,显著提升了器件在可见光及近红外波段的光响应,弥补了单一材料的不足。
优化后的器件在极低辐照下表现出高光响应度(17402 A/W),高光电流(570 μA)及超大线性动态范围(152 dB),性能位居层状半导体集成探测器前列。电场与光场协同调控实验结果揭示,BaTiO3与MoS2的互补作用是关键:BaTiO3的极化强度对电场和光场均敏感,能提供调控MoS2沟道的局域铁电场,调节其费米能级与电导率,进而增强电信号。
?
异质结器件结构和原理示意图。研究团队供图
此外,结构非对称的BaTiO3可以基于SHG将强功率近红外光转换为可见波段,再被MoS2层吸收并提升光电流。随着功率增强,光响应度先降后升,非线性光谱分析表明强光下响应度增加源于非线性上转换机制。这一发现为近红外探测提供了新的可能,尤其在克服强光致盲领域展现出巨大潜力。
该发现不仅为光电探测领域提供了新的解决思路,而且标志着利用铁电薄膜与二维半导体的异质集成来构建高性能光电器件已经迈出了实质性的步伐。
上述研究得到国家重点研发计划课题、国家自然明升体育app基金、国家重大专项、广东省自然明升体育app杰出青年基金、广东省国际合作项目和暨南大学等项目的大力支持。
相关论文信息:http://doi.org/10.1002/lpor.202400445
版权声明:凡本网注明“来源:明升官网明升体育app报、明升手机版(明升官网)、明升体育app手机版杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、明升头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。