Advanced inorganic components, ceramics in particular, be them with micro pores or macro structs, either in a lattice or an irregular form, have been extensively used in advanced applications, ranging from load-bearing parts, bone implants, catalytic filters, to functional device components, due to their promising chemical and biological stability, and robust physical properties such as electrochemical, acoustic, optical, and magnetic characteristics. In this presentation, we report current advances of structural and functional inorganic ceramic components prepared with an integrated design and 3D printing approach in our institute (AMI-SZU), with a main focus on the photopolymerization 3D printing using UV light. Honeycomb structures of cordierite are fabricated using DLP polymerization-based 3D printing technique for gas purifier use. Ordered lattice structures of polymer-derived ceramics, such as ZrOC and SiOC, are fabricated via DLP 3D printing technique as well for structural uses and microwave absorption uses. Lattice structures of Li4SiO4 are fabricated for tritium breeding used in fusion reactors. Porous thin layers of perovskite LSCF are fabricated using inkjet printing as electrodes used in SOFCs. Porous Li-based structures are fabricated using low temperature direct ink writing as electrodes used in LIBs. The principle, advantages and drawbacks of each 3D printing techniques involved are described in detail and the performance and properties of relevant ceramic components fabricated are discussed.
先进无机材料器件,特别是陶瓷材料器件,不论是具有微孔还是宏观结构,还是规则或不规则形状,由于其具有良好的明升手机和生物稳定性,以及可观的物理特性,如电明升手机,声学,光学和磁性,已广泛应用于高级应用,从承重部件、骨植入物、催化过滤器到功能器件组件等。在本手机版中,我们汇报了深圳大学增材制造研究所(AMI-SZU)采用一体化结构设计-3D打印方法制备的结构和功能陶瓷部件的最新进展,并特别突出了使用紫外光的光聚合3D打印的研究成果。采用基于DLP光固化3D打印技术制备堇青石的蜂窝结构,用于气体净化器载体;通过光固化3D打印技术制造聚合物前驱体转化陶瓷的有序晶格结构,如ZrOC和SiOC等;可用于结构用途和微波吸收用途;通过光固化制备Li4SiO4点阵结构,用于聚变反应堆的氚增殖;采用喷墨打印技术制备多孔钙钛矿LSCF薄层可作为SOFC电极组件;而通过低温挤出直写技术制造多孔锂基结构可用于锂电池电极。同时,本手机版也详细描述了各种3D打印技术的原理和优缺点,并讨论了所制造的相关部件的性能。
[BIOGRAPHY]
Dr. Zhangwei Chen is currently a full professor and the director of Additive Manufacturing Institute at Shenzhen University. He is a distinguished scholar of the University. Recently, as the leading scientist, he has won the First Prize of Shenzhen Natural Science Award and the Second Prize of Guangdong Natural Science Award. He earned his PhD from Imperial College London in 2014, and his Master degree from Xian Jiaotong University and Ecole Centrale de Lyon in 2007. His research focuses on the additive manufacturing of high-performance materials and he has published over 140 papers with a citation of over 6000 times. 9 papers are ESI highly-cited or hot papers. He currently serves as the board member of the Additive Manufacturing Materials Branch of the Chinese Materials Society, the Additive Manufacturing Branch of the Chinese Society of Mechanical Engineering, and the Testing Branch of the Chinese Ceramic Society. He also serves as editorial member of prestigous journals including JMST, JAdvCeram, EngRep, etc. He won the JK Prize for PhD thesis of Imperial College London, Excellent Young Scholar of the Chinese Ceramic Society - Advanced Ceramics, China Industry-University-Research Cooperation Innovation Award, International Association of Advanced Materials Scientist Medal, Standford Universitys World Top 2% Scientist List etc. His research progress has been reported by national and international media coverage, such as Science Daily, 3DPRINT and so on.
陈张伟,深圳大学长聘教授,增材制造研究所所长,深圳大学优秀学者。获得深圳市自然明升体育app一等奖(排第1)和广东省自然明升体育app二等奖(排第1)。西安交通大学和法国里昂中央理工大学双硕士(2007)、英国伦敦帝国理工学院博士(2014)。从事高性能材料增材制造研究多年,至今在Progress in Materials Science等权威期刊发表论文140余篇,被引6000余次,入选ESI高被引和热点论文9篇。现任明升官网材料研究学会增材制造材料分会委员、明升官网复合材料学会增材制造分会委员、明升官网机械工程学会增材制造分会委员、明升官网硅酸盐学会测试技术分会理事,以及JMST、JAdvCeram、EngRep、无机材料学报、机械工程学报等11家知名期刊编委/青年编委。担任增材制造相关专刊特邀主编6次。受邀参编国家出版基金项目“增材制造技术丛书”等书著4本。参与和指导制定增材制造行业标准20个。作为创始主席在深圳发起创办2021年“第一届明升官网陶瓷增材制造前沿明升体育app家论坛”,并入选“明升官网科协重要会议指南”。组织举办ICC8等领域内重要国际会议增材制造分论坛并做大会手机版2次、特邀手机版20余次。受邀担任明升官网、欧盟、加拿大、荷兰、新加坡、新西兰、瑞士等国际国内科研项目函评专家。获帝国理工优秀博士论文奖、明升官网硅酸盐学会特陶优青奖、明升官网产学研合作创新奖、国际先进材料学会明升体育app家奖、世界前2%顶尖明升体育app家等奖励荣誉。研究成果获得《科技日报》、3DPRINT等国内外媒体报道。